1
E formation of DNA and protein adducts [105-107] that can serve as persistent sources of oxidative stress, and cause further DNA damage and protein dysfunction. Recently, we demonstrated a role for ceramidemediated neurodegeneration in a model of diet-induced obesity with T2DM [45], and showed that in vitro ceramide exposure causes neurodegeneration with impairments in neuronal viability, energy m
1
Cells of the rat pancreas. Physiol Res 2001, 50(6):537-546. Doi K: [Studies on the mechanism of the diabetogenic activity of streptozotocin and on the ability of compounds to block the diabetogenic activity of streptozotocin (author's transl)]. Nippon Naibunpi Gakkai Zasshi 1975, 51(3):129-147. Iwai S, Murai T, Makino S, Min W, Morimura K, Mori S, Hagihara A, Seki S, Fukushima S: High sensitivity
1
Xidative stress and neurodegeneration. Cerebellar protein homogenates were used to measure (A) GSK-3b; (B) phospho (p)-GSK-3b; (C) GFAP; (D) GAPDH; (E) HNE; (F) malondialdehyde, MDA; (G) Nitrotyrosine, N-TYR; or (H) b-Actin; by direct binding ELISA. Immunoreactivity was detected with HRP-conjugated secondary antibody and Amplex Red soluble fluorophor. Fluorescence light units (FLU) were measured (
1
E formation of DNA and protein adducts [105-107] that can serve as persistent sources of oxidative stress, and cause further DNA damage and protein dysfunction. Recently, we demonstrated a role for ceramidemediated neurodegeneration in a model of diet-induced obesity with T2DM [45], and showed that in vitro ceramide exposure causes neurodegeneration with impairments in neuronal viability, energy m
1
Ingomyelin phosphodiesterase; SPTLC: Serine palmitoyltransferase; STZ: Streptozotocin; T2DM: Type 2 diabetes mellitus; TBS: Tris buffered saline; UGCG: UDP-glucose ceramide glycoysltransferase. Acknowledgements Supported by AA-11431, AA-12908, and K24-AA-16126 from the National Institutes of Health. Author details 1 Department of Pathology (Neuropathology), Rhode Island Hospital, 593 Eddy Street,
1
Ation with impairments in insulin/IGF signaling mechanisms, and deficits in cholinergic and neuronal cytoskeletal gene and protein expression in brain, whereas chronic HFD feeding alone produces more restrictive deficits in insulin/IGF signaling mechanisms with reduced ChAT expression and increased oxidative stress. The combined exposures caused overlapping structural and molecular abnormalities t
1
Ation with impairments in insulin/IGF signaling mechanisms, and deficits in cholinergic and neuronal cytoskeletal gene and protein expression in brain, whereas chronic HFD feeding alone produces more restrictive deficits in insulin/IGF signaling mechanisms with reduced ChAT expression and increased oxidative stress. The combined exposures caused overlapping structural and molecular abnormalities t
1
Antibody (1:10000) and Amplex Red soluble fluorophore [79]. Amplex Red fluorescence was measured (Ex 579/Em 595) in a SpectraMax M5 microplate reader (Molecular Devices Corp., Sunnyvale, CA). Negative control reactions included substitutions with nonrelevant primary or secondary antibodies, and omission of primary or secondary antibody. Immunoreactivities were normalized to protein content as dete